Достоинства и недостатки геотермальная энергетика. Горячие источники южной кореи

Достоинства и недостатки геотермальная энергетика. Горячие источники южной кореи

Стремительный рост энергопотребления, ограниченность невозобновляемых природных богатств и экологические проблемы вынуждают задуматься об использовании альтернативных источников энергии. В этом отношении особого внимания заслуживает применение геотермальных ресурсов.

Источники тепла

Для построения геотермальных электростанций идеальными считаются районы с геологической активностью, где естественное тепло находится на сравнительно небольшой глубине. Сюда относятся области, изобилующие гейзерами, открытыми термальными источниками с водой, разогретой вулканами.

Именно здесь геотермальная энергетика развивается наиболее активно. Однако и в сейсмически неактивных районах имеются пласты земной коры, температура которых составляет более 100 °С, а на каждые 36 метров глубины температурный показатель возрастает еще на 1 °С. В этом случае бурят скважину и закачивают туда воду. На выходе получают кипяток и пар, которые можно использовать как для обогрева помещений, так и для производства электрической энергии. Территорий, где можно таким образом получать энергию, много, поэтому геотермальные электростанции могут функционировать повсеместно.

Добыча естественного тепла может осуществляться разными путями. Так, перспективным источником считается так называемая сухая порода (петротермальные ресурсы, сконцентрированные в горных породах). В этом случае в породе с близкими залежами тепла бурится скважина, в которую закачивают воду под большим давлением. Таким способом происходит расширение существующих изломов, и под землей образуются резервуары пара и кипятка. Подобный опыт проводился в Кабардино-Балкарии. Гидроразрыв гранитной породы осуществляли на глубине около 4 км, где температура составляла 200 °С. Однако авария в скважине стала причиной прекращения эксперимента.

Другой источник тепловой энергии - горячие подземные воды с содержанием метана (гидрогеотермальные запасы). В этом случае попутный газ дополнительно может использоваться в качестве топлива.

Во многих фантастических произведениях в качестве источника тепла для выработки электроэнергии и обогрева используется магма. На самом деле температура верхних слоев этого расплавленного вещества может достигать 1200 °С. На Земле имеются местности, где магма находится на доступной для бурения глубине, но методы практического освоения магматического тепла пока находятся в стадии разработки.

Как работает ГеоЭС?

Сегодня применяется три способа производства электричества с использованием геотермальных средств, зависящих от состояния среды (вода или пар) и температуры породы.

Прямой (использование сухого пара). Пар напрямую воздействует на турбину, питающую генератор. Первые геотермальные электростанции работали на сухом пару.

Непрямой (применение водяного пара). Здесь используется гидротермальный раствор, который закачивается в испаритель. Полученное при снижении давления испарение приводит турбину в действие. Непрямой способ на сегодня считается самым распространенным. Здесь используются подземные воды температурой около 182 °С, которые закачиваются в генераторы, расположенные на поверхности.

Смешанный, или бинарный. В этом случае используется гидротермальная вода и вспомогательная жидкость с низкой точкой кипения, например фреон, который закипает под воздействием горячей воды. Образовавшийся при этом пар от фреона крутит турбину, потом конденсируется и снова возвращается в теплообменник для нагрева. Образуется замкнутая система (контур), практически исключающая вредные выбросы в атмосферу.

Плюсы и минусы геотермальной энергетики

Запасы геотермальных ресурсов считаются возобновляемыми, практически неисчерпаемыми, но при одном условии: в нагнетательную скважину нельзя закачивать большое количество воды в короткий промежуток времени. Для работы станции не требуется внешнее топливо. Установка может работать автономно, на своем вырабатываемом электричестве. Внешний источник энергии необходим лишь для первого запуска насоса. Станция не требует дополнительных вложений, за исключением расходов на техническое обслуживание и ремонтные работы. Геотермальным электрическим станциям не нужны площади для санитарных зон. В случае расположения станции на морском или океаническом берегу, возможно ее использование для естественного опреснения воды. Этот процесс может происходить непосредственно в режиме работы станции - при разогреве воды и охлаждении водяного испарения. Одним из главных минусов геотермальных станций является их дороговизна. Первоначальные вложения в разработку, проектирование и строительство геотермальных станций достаточно велики.

Зачастую проблемы возникают в выборе подходящего места для размещения электростанции и получении разрешения властей и местных жителей.

Через рабочую скважину возможны выбросы горючих и токсичных газов, минералов, которые содержатся в земной коре. Технологии на некоторых современных установках позволяют собирать эти выбросы и перерабатывать в топливо. Бывает, что действующая электростанция останавливается. Это может произойти вследствие естественных процессов в породе либо при чрезмерной закачке воды в скважину.

Мировой опыт геотермальной энергетики

На сегодня в США и на Филиппинах построены самые крупные ГеоЭС. Они представляют собой целые геотермальные комплексы, состоящие из десятков отдельных геотермальных станций. Самым мощным считается комплекс «Гейзеры», расположенный в Калифорнии. Он состоит из 22 станций с суммарной мощностью 725 МВт, достаточной для обеспечения многомиллионного города.

Мощность филиппинской электростанции «Макилинг-Банахау» составляет около 500 МВт. Еще одна филиппинская электростанция с названием «Тиви» имеет мощность 330 МВт. «Долина Империал» в США - комплекс из десяти геотермальных электростанций с совокупной мощностью 327 МВт.

В СССР геотермальная энергетика начала свое развитие с 1954 года, когда было принято решение о создании лаборатории по исследованию естественных тепловых ресурсов на Камчатке. В 1966 году там была запущена Паужетская геотермальная электростанция с традиционным циклом (сухой пар) и мощностью 5 МВт. Через 15 лет ее мощность была доработана до 11 МВт.

В 1967 году, также на Камчатке, начала функционировать Паратунская станция с бинарным циклом. Кстати, уникальная технология бинарного цикла, разработанная и запатентованная советскими учеными С. Кутателадзе и Л. Розенфельдом, была куплена многими странами. В дальнейшем большие уровни добычи углеводородного сырья в 1970-е годы, критическая экономическая и политическая ситуация в 1990-е годы остановили развитие геотермальной энергетики в России. Однако сейчас интерес к ней вновь появился по ряду причин. Наиболее перспективными областями Российской Федерации в части использования тепловой энергии для выработки электричества являются Курильские острова и Камчатка. На Камчатке имеются такие потенциальные геотермальные ресурсы с вулканическими запасами парогидротерм и энергетических термальных вод, которые способны обеспечить потребность края на 100 лет. Многообещающим считается Мутновское месторождение, известные запасы которого могут предоставить до 300 МВт электричества. История освоения этой области началась с георазведки, оценки ресурсов, проектирования и строительства первых камчатских ГеоЭС (Паужетской и Паратунской), а также Верхне-Мутновской геотермальной станции мощностью 12 МВт и Мутновской, имеющей мощность 50 МВт. В сравнении с энергетическими ресурсами отдельных филиппинских и американских ГеоЭС отечественные объекты по производству альтернативной энергии значительно скромнее: их суммарная мощность не превышает и 90 МВт.

Но камчатские электростанции, к примеру, обеспечивают потребности региона в электричестве на 25%, что в случае непредвиденных прекращений поставки топлива не позволит жителям полуострова остаться без электроэнергии.

В России имеются все возможности для разработки геотермальных ресурсов - как петротермальных,так и гидрогеотермальных.

Однако используются они крайне мало, а перспективных областей более чем достаточно. Кроме Курил и Камчатки возможно практическое применение на Северном Кавказе, Западной Сибири, Приморье, Прибайкалье, Охотско-Чукотском вулканическом поясе.

Voted Thanks!

Возможно Вам будет интересно:


  • На спутниках других планет очень холодно, однако ученые считают, что там может…

Геотермальная электрическая станция – это комплекс инженерных устройств, преобразующих тепловую энергию планеты в электрическую энергию.

Геотермальная энергетика

Геотермальная энергетика относится к «зеленым» видам энергии. Данный способ энергообеспечения потребителей получил широкое распространение в регионах с термической активностью планеты для различных видов использования.

Геотермальная энергия бывает:

  • Петротермальная, когда источник энергии — слои земли обладающие высокой температурой;
  • Гидротермальная, когда источник энергии — подземные воды.

Геотермальные установки используются для энергоснабжения предприятий сельского хозяйства, промышленности и в жилищно-коммунальной сфере.

Принцип работы геотермальной электростанции

В современных геотермальных установках преобразование тепловой энергии земли в электрическую осуществляют нескольким способами, это:

Прямой метод

В установках такого вида, пар, поступающий из недр земли, работает в непосредственном контакте с паровой турбиной. Пар подается на лопасти турбины, которая свое вращательное движение передает генератору, вырабатывающему электрический ток.

Не прямой метод

В этом случае из земли закачивается раствор, который поступает на испаритель, и уже после испарения, полученный пар поступает на лопасти турбины.

Смешанный (бинарный) метод

В устройствах, работающих по этому методу, вода из скважины поступает на теплообменник, в котором, передает свою энергию теплоносителю, который, в свою очередь, под воздействием полученной энергии испаряется, а образовавшийся пар поступает на лопасти турбины.
В геотермальных установках, работающих по прямому методу (способу) воздействия на турбину, источником энергии служит геотермальный пар.

Во втором методе — используются перегретые гидротехнические растворы (гидротермы), которые обладают температурой выше 180 *С.

При бинарном методе – используются горячая вода, забираемая из слоев земли, а в качестве парообразующей используется жидкости с меньшей температурой кипения (фреон и подобные).

Плюсы и минусы

К достоинствам использования электростанций данного вида можно отнести :

  • Это возобновляемый источник энергии;
  • Огромные запасы в дальней перспективе развития;
  • Способность работать в автономном режиме;
  • Не подверженность сезонным и погодным факторам влияния;
  • Универсальность – производство электрической и тепловой энергии;
  • При строительстве станции не требуется устройство защитных (санитарных) зон.

Недостатками станций являются :

  • Высокая стоимость строительства и оборудования;
  • В процессе работы вероятны выбросы пара с содержанием вредных примесей;
  • При использовании гидротермов из глубинных слоев земли, необходима их утилизация.

Геотермальные станции в России

Геотермальная энергетика, наряду с прочими видами «зеленой» энергетики, неукоснительно развивается на территории нашего государства. По расчетам ученых, внутренняя энергия планеты, в тысячи раз превышает количество энергии содержащейся в природных запасах традиционных видах топлива (нефть, газ).

В России успешно работают геотермальные станции, это:

Паужетская ГеоЭC

Расположена около поселка Паужетка на полуострове Камчатка. Ведена в эксплуатацию в 1966 году.
Технические характеристики:

  1. Годовой объем вырабатываемой электрической энергии – 124,0 млн.кВт.часов;
  2. Количество энергоблоков – 2.

Ведутся работы по реконструкции, в результате которой электрическая мощность увеличится до 17,0 МВт.

Верхне-Мутновская опытно-промышленная ГеоЭС

Расположена в Камчатском крае. Введена в эксплуатацию в 1999 году.
Технические характеристики:

  1. Электрическая мощность – 12,0 МВт;
  2. Годовой объем вырабатываемой электрической энергии – 63,0 млн.кВт.часов;
  3. Количество энергоблоков – 3.

Мутновская ГеоЭС

Наиболее крупная электрическая станция подобного типа. Расположена в Камчатском крае. Введена в эксплуатацию в 2003 году.
Технические характеристики:

  1. Электрическая мощность – 50,0 МВт;
  2. Годовой объем вырабатываемой электрической энергии – 350,0 млн кВт.часов;
  3. Количество энергоблоков – 2.

Океанская ГеоЭС

Расположена в Сахалинской области. Введена в эксплуатацию в 2007 году.
Технические характеристики:

  1. Электрическая мощность – 2,5 МВт;
  2. Количество энергомодулей – 2.

Менделеевская ГеоТЭС

Расположена на острове Кунашир. Введена в эксплуатацию в 2000 году.

Технические характеристики:

  1. Электрическая мощность – 3,6 МВт;
  2. Тепловая мощность – 17 Гкал/час;
  3. Количество энергомодулей – 2.

В настоящее время ведется модернизация станции, после которой мощность составит 7,4 МВт.

Геотермальные станции в мире

Во всех технически развитых странах, где есть сейсмически активные территории, где внутренняя энергия земли выходит наружу, строятся и эксплуатируются геотермальные электрические станции. Опытом строительства подобных инженерных объектов обладают:

США

Страна с наибольшим количеством потребления электрической энергии, вырабатываемой гелиотермическим станциями.

Установленная мощность энергоблоков составляет более 3000 МВт- это 0,3% от всей вырабатываемой электрической энергии в США.

Наиболее крупные это:

  1. Группа станций «The Geysers». Расположена в Калифорнии, в состав группы входит 22 станции, установленной мощностью 1517,0 МВт.
  2. В штате Калифорния, станция «Imperial Valley Geothermal Area» установленной мощностью 570,0 МВт.
  3. В штате Невада станция «Navy 1 Geothermal Area» установленной мощностью 235,0 МВт.

Филиппины

Установленная мощность энергоблоков составляет более 1900 МВт, что составляет 27 % от всей вырабатываемой электрической энергии в стране.

Наиболее крупные станции:

  1. «Макилинг-Банахау» установленной мощностью 458,0 МВт.
  2. «Тиви», установленная мощность 330,0 МВт.

Индонезия

Установленная мощность энергоблоков составляет более 1200 МВт, что составляет 3,7 % от всей вырабатываемой электрической энергии в стране.

Наиболее крупные станции:

  1. «Sarulla Unit I», установленная мощность – 220,0 МВт.
  2. «Sarulla Unit II», установленная мощность — 110,0 МВт.
  3. «Sorik Marapi Modular», установленная мощность — 110,0 МВт.
  4. «Karaha Bodas», установленная мощность – 30,0 МВт.
  5. «Ulubelu Unit» — находится в стадии строительства на Суматре.

Мексика

Установленная мощность энергоблоков составляет 1000 МВт, что составляет 3,0 % от всей вырабатываемой электрической энергии в стране.

Наиболее крупная:

  1. «Cerro Prieto Geothermal Power Station», установленной мощностью 720,0 МВт.

Новая Зеландия

Установленная мощность энергоблоков составляет более 600 МВт, что составляет 10,0 % от всей вырабатываемой электрической энергии в стране.

Наиболее крупная:

  1. «Ngatamariki», установленной мощностью 100,0 МВт.

Исландия

Установленная мощность энергоблоков составляет 600 МВт, что составляет 30,0 % от всей вырабатываемой электрической энергии в стране.

Наиболее крупные станции:

  1. «Hellisheiði Power Station», установленной мощностью 300,0 МВт.
  2. «Nesjavellir», установленной мощностью 120,0 МВт.
  3. «Reykjanes», установленной мощностью 100,0 МВт.
  4. «Svartsengi Geo», установленной мощностью 80,0 МВт.

Кроме выше перечисленных, геотермальные электростанции работают в Австралии, Японии, странах Евросоюза, Африки и Океании.

Геотермальная энергия - это энергия тепла, которое выделяется из внутренних зон Земли на протяжении сотен миллионов лет. По данным геолого-геофизических исследований, температура в ядре Земли достигает 3 000-6 000 °С, постепенно снижаясь в направлении от центра планеты к ее поверхности. Извержение тысяч вулканов, движение блоков земной коры, землетрясения свидетельствуют о действии мощной внутренней энергии Земли. Ученые считают, что тепловое поле нашей планеты обусловлено радиоактивным распадом в ее недрах, а также гравитационной сепарацией вещества ядра.
Главными источниками разогрева недр планеты есть уран, торий и радиоактивный калий. Процессы радиоактивного распада на континентах происходят в основном в гранитном слое земной коры на глубине 20-30 и более км, в океанах - в верхней мантии. Предполагают, что в подошве земной коры на глубине 10-15 км вероятное значение температур на континентах составляет 600-800 ° С, а в океанах - 150-200 ° С.
Человек может использовать геотермальную энергию только там, где она проявляет себя близко к поверхности Земли, т.е. в районах вулканической и сейсмической активности. Сейчас геотермальную энергию эффективно используют такие страны, как США, Италия, Исландия, Мексика, Япония, Новая Зеландия, Россия, Филиппины, Венгрия, Сальвадор. Здесь внутреннее земное тепло поднимается к самой поверхности в виде горячей воды и пара с температурой до 300 °С и часто вырывается наружу как тепло фонтанирующих источников (гейзеры), например, знаменитые гейзеры Йеллоустонского парка в США, гейзеры Камчатки, Исландии.
Геотермальные источники энергии подразделяют на сухой горячий пар, влажный горячий пар и горячую воду. Скважину, которая является важным источником энергии для электрической железной дороге в Италии (близ г. Лардерелло), с 1904 г. питает сухой горячий пар. Два другие известные в мире места с горячей сухим паром - поле Мацукава в Японии и поле гейзеров возле Сан-Франциско, где также давно и эффективно используют геотермальную энергию. Больше всего в мире влажного горячего пара находится в Новой Зеландии (Вайракей), геотермальные поля чуть меньшей мощности - в Мексике, Японии, Сальвадоре, Никарагуа, России.
Таким образом, можно выделить четыре основных типа ресурсов геотермальной энергии:
поверхностное тепло земли, используемое тепловыми насосами;
энергетические ресурсы пара, горячей и теплой воды у поверхности земли, которые сейчас используются в производстве электрической энергии;
теплота, сосредоточенная глубоко под поверхностью земли (возможно, при отсутствии воды);
энергия магмы и теплота, которая накапливается под вулканами.

Запасы геотермальной теплоты (~ 8 * 1030Дж) в 35 млрд раз превышают годовое мировое потребление энергии. Лишь 1% геотермальной энергии земной коры (глубина 10 км) может дать количество энергии, в 500 раз превышающее все мировые запасы нефти и газа. Однако сегодня может быть использована лишь незначительная часть этих ресурсов, и это обусловлено, прежде всего, экономическими причинами. Начало промышленному освоению геотермальных ресурсов (энергии горячих глубинных вод и пара) было положено в 1916 году, когда в Италии ввели в эксплуатацию первую геотермальную электростанцию мощностью 7,5 МВт. За прошедшее время, накоплен немалый опыт в области практического освоения геотермальных энергоресурсов. Общая установленная мощность действующих геотермальных электростанций (ГеоТЭС) равнялась: 1975 г. - 1 278 МВт, в 1990 году - 7 300 МВт. Наибольшего прогресса в этом вопросе достигли США, Филиппины, Мексика, Италия, Япония.
Технико-экономические параметры ГеоТЭС изменяются в довольно широких пределах и зависят от геологических характеристик местности (глубины залегания, параметров рабочего тела, его состав и т.д.). Для большинства введенных в эксплуатацию ГеоТЭС себестоимость электроэнергии является подобной себестоимости электроэнергии, получаемой на угольных ТЭС, и составляет 1200 ... 2000 долл. США / МВт.
В Исландии 80% жилых домов обогревается с помощью горячей воды, добытой из геотермальных скважин под городом Рейкьявик. На западе США за счет геотермальных горячих вод обогревают около 180 домов и ферм. По мнению специалистов, между 1993 и 2000 гг глобальное выработки электричества с помощью геотермальной энергии выросло более чем вдвое. Запасов геотермального тепла в США существует так много, что оно может, теоретически, давать в 30 раз больше энергии, чем ее сейчас потребляет государство.
В перспективе возможно использование тепла магмы в тех районах, где она расположена близко к поверхности Земли, а также сухого тепла разогретых кристаллических пород. В последнем случае скважины бурят на несколько километров, закачивают вниз холодную воду, а обратно получают горячую.

Ресурсы нашей планеты не бесконечны. Используя в качестве главного источника энергии природные углеводороды, человечество рискует в один прекрасный момент обнаружить, что они исчерпаны, и прийти к глобальному кризису потребления привычных благ. XX век стал временем масштабных сдвигов в области энергетики. Ученые и экономисты в разных странах всерьез задумались о новых способах получения и возобновляемых источниках электричества и тепла. Наибольший прогресс был достигнут в области ядерных исследований, но появились интересные идеи, касающиеся полезного использования других природных явлений. Ученые давно узнали, что планета наша внутри горяча. Для получения пользы от глубинного тепла созданы геотермальные электростанции. В мире пока их немного, но, возможно, со временем станет больше. Каковы их перспективы, не опасны ли они и можно ли рассчитывать на высокую долю ГТЭС в общем объеме добываемой энергии?

Первые шаги

В дерзновенных поисках новых источников энергии ученые рассматривали множество вариантов. Изучались возможности освоения энергии приливов и отливов Мирового океана, преобразования солнечного света. Вспомнили и о старинных ветряных мельницах, снабдив их вместо каменных жерновов генераторами. Большой интерес представляют и геотермальные электростанции, способные вырабатывать энергию из тепла нижних раскаленных слоев земной коры.

В середине шестидесятых годов СССР не испытывал ресурсного дефицита, но энерговооруженность народного хозяйства, тем не менее, оставляла желать лучшего. Причина отставания от промышленно развитых стран в этой области состояла не в недостатке угля, нефти или мазута. Огромные расстояния от Бреста до Сахалина затрудняли доставку энергии, она становилась очень дорогой. Советские ученые и инженеры предлагали самые смелые решения этой задачи, и некоторые из них воплощались в жизнь.

В 1966 году на Камчатке заработала Паужетская геотермальная электростанция. Ее мощность составила довольно скромную цифру в 5 мегаватт, но этого вполне хватало для снабжения близлежащих населенных пунктов (поселков Озерновского, Шумного, Паужетки, сел Усть-Большерецкого р-на) и промышленных предприятий, главным образом рыбоконсервных заводов. Станция была экспериментальной, и сегодня можно смело утверждать, что опыт удался. В качестве источников тепла используются вулканы Камбальный и Кошелев. Преобразование осуществляли две установки турбогенераторного типа, первоначально по 2,5 МВт. Через четверть века установленную мощность удалось поднять до 11 МВт. Старое оборудование полностью исчерпало свой ресурс только в 2009 году, после чего была произведена полная реконструкция, включавшая и прокладку дополнительных трубопроводов теплоносителя. Опыт успешной эксплуатации побудил энергетиков строить и другие геотермальные электростанции. В России их сегодня пять.

Как работает

Исходные данные: в глубине земной коры есть тепло. Его нужно преобразовать в энергию, например, электрическую. Как это сделать? Принцип работы геотермальной электростанции достаточно прост. Под землю закачивается вода через специальную скважину, называемую входной или нагнетающей (по-английски injection, то есть "впрыск"). Для того чтобы определить подходящую глубину, требуется геологическое исследование. Вблизи нагретых магмой слоев, в конечном счете, должен образоваться подземный проточный бассейн, играющий роль теплообменника. Вода сильно нагревается и превращается в пар, который через другую скважину, (рабочую или эксплуатационную) подается на лопасти турбины, сопряженной с осью генератора. На первый взгляд, все выглядит очень просто, но на практике геотермальные электростанции устроены куда сложнее и имеют различные особенности конструкции, обусловленные эксплуатационными проблемами.

Достоинства геотермальной энергетики

Этот способ получения энергии имеет неоспоримые плюсы. Во-первых, геотермальные электростанции не требуют топлива, запасы которого лимитированы. Во-вторых, эксплуатационные расходы сведены к издержкам на технически регламентированные работы по плановой замене комплектующих изделий и обслуживанию технологического процесса. Срок окупаемости вложений составляет несколько лет. В-третьих, такие станции условно можно считать экологически чистыми. Есть, правда, в этом пункте и острые моменты, но о них позже. В-четвертых, дополнительной энергии для технологических нужд не требуется, насосы и другие приемники энергии запитываются от добываемых ресурсов. В-пятых, установка, помимо работы по прямому назначению, может производить опреснение воды Мирового океана, на берегу которого обычно строятся геотермальные электростанции. Плюсы и минусы присутствуют, однако, и в этом случае.

Недостатки

На фотографиях все выглядит просто чудесно. Корпуса и установки эстетичны, над ними не поднимаются клубы черного дыма, только белый пар. Однако не все так прекрасно, как кажется. Если геотермальные электростанции расположены поблизости населенных пунктов, жителям окрестностей досаждает производимый предприятиями шум. Но это лишь видимая (вернее, слышимая) часть проблемы. При бурении глубоких скважин никогда нельзя предвидеть, что именно из них пойдет. Это может быть токсичный газ, минеральные воды (не всегда лечебные) или даже нефть. Разумеется, если геологи наткнутся на пласт полезных ископаемых, то это даже хорошо, но такое открытие вполне может полностью изменить привычный уклад жизни местных жителей, поэтому разрешение на проведение даже исследовательских работ региональные власти дают крайне неохотно. Вообще выбрать место для ГТЭС довольно сложно, ведь в результате ее эксплуатации вполне может возникнуть провал грунта. Условия внутри земной коры меняются, и если источник тепла утратит со временем свой тепловой потенциал, затраты на строительство окажутся напрасными.

Как выбрать место

Несмотря на многочисленные риски, в разных странах строят геотермальные электростанции. Преимущества и недостатки есть у любого способа получения энергии. Вопрос состоит в том, насколько доступны иные ресурсы. В конце концов, энергетическая независимость является одной из основ государственного суверенитета. Страна может не обладать запасами полезных ископаемых, но иметь множество вулканов, как Исландия, например.

Следует учитывать, что наличие геологически активных зон - непременное условие для развития геотермальной отрасли энергетики. Но при принятии решения о строительстве подобного объекта необходимо брать в расчет и вопросы безопасности, поэтому, как правило, в густонаселенных районах геотермальные электростанции не возводят.

Следующий важный момент - наличие условий для охлаждения рабочей жидкости (воды). В качестве места для ГТЭС вполне подойдет океанское или морское побережье.

Камчатка

Россия богата всеми видами природных ресурсов, но это не означает, что в бережном отношении к ним нет нужды. Геотермальные электростанции в России строят, причем в последние десятилетия все более активно. Они частично обеспечивают потребность энергообеспечения отдаленных районов Камчатки и Курил. Помимо уже упомянутой Паужетской ГТЭС, на Камчатке в эксплуатацию введена 12-мегаваттная Верхне-Мутновская ГТЭС (1999). Намного мощней ее Мутновская геотермальная электростанция (80 МВт), расположенная возле того же вулкана. Вместе они обеспечивают более трети объема энергии, потребляемой регионом.

Курилы

Сахалинская область также пригодна для строительства геотермальных энергопроизводящих предприятий. Здесь их два: Менделеевская и Океанская ГТЭС.

Менделеевская ГТЭС предназначена для решения проблемы энергоснабжения острова Кунашир, на котором расположен поселок городского типа Южно-Курильск. Название свое станция получила не в честь великого русского химика: так называется островной вулкан. Строительство началось в 1993-м, через девять лет предприятие введено в строй. Первоначально мощность составляла 1,8 МВт, но после модернизации и запуска следующих двух очередей достигла пяти.

На Курилах, на острове Итуруп, в том же 1993 году была заложена еще одна ГТЭС, получившая название «Океанская». Заработала она в 2006-м, через год вышла на проектную мощность в 2,5 МВт.

Мировой опыт

Русские ученые и инженеры стали пионерами во многих отраслях прикладной науки, но геотермальные электростанции изобрели все же за рубежом. Первая в мире ГТЭС (250 кВт) была итальянской, начала свою работу в 1904 году, ее турбина вращалась паром, выходящим из природного источника. До этого подобные явления использовались только в лечебно-курортных целях.

В настоящее время позиции России в области использования геотермального тепла также нельзя назвать передовыми: ничтожный процент вырабатываемого в стране электричества приходится на пять станций. Самое большое значение эти альтернативные источники имеют для экономики Филиппин: на них приходится один киловатт из каждых пяти, производимых в республике. Продвинулись вперед и другие страны, в числе которых Мексика, Индонезия и США.

На просторах СНГ

На уровень развития геотермальной энергетики влияет в большей степени не технологическая «продвинутость» той или иной страны, а осознание ее руководством насущной необходимости в альтернативных источниках. Есть, конечно, и «ноу-хау», касающиеся способов борьбы с накипью в теплообменниках, способов управления генераторами и прочей электрической частью системы, но вся эта методология специалистам давно известна. Большую заинтересованность в строительстве ГеоТЭС в последние годы проявляют многие постсоветские республики. В Таджикистане изучают районы, являющие собой геотермальное богатство страны, идет строительство 25-мегаваттной станции «Джермахпюр» в Армении (Сюникская область), соответствующие исследования ведутся в Казахстане. Горячие источники Брестской области стали предметом интереса белорусских геологов: они начали пробные бурения двухкилометровой скважины Вычулковская. В общем, за геоэнергетикой, скорее всего, есть будущее.

Впрочем, и с теплом Земли обращаться нужно бережно. Ограничен и этот природный ресурс.